Al-Farabi Kazakh National University Faculty of Physics and Technology Department of Theoretical and Nuclear Physics #### EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE YaA5208 « Nuclear Astrophysics » Specialty "6M060400 –Physics" Educational program "Computer modeling of Multipartial Systems and Nuclear Astrophysics " Course – 1 Semester – 2 Number of credits – 3 Almaty 2018 Educational-methodical complex of the discipline is made by Takibayev N.Zh., d.s.p.-m., academic of NAS RK, professor lecturer (name, surname, scientific degree, academic rank) Based on the working curriculum on the specialty "6M060400 - Physics" Considered and recommended at the meeting of the department Theoretical and **Nuclear Physics** from «<u>AZ</u>» <u>O</u> Ø 2018 year, protocol № <u>1</u> Head of department Abishev M.E. (Signature) Recommended by methodical bureau of the faculty «<u>\$/</u> » <u>Of</u> 2018 year, protocol № / Chairman of the method bureau of the faculty ______ Gabdullina A.T. (Signature) ## Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics ### Syllabus Spring semester, 2018-2019 academic year #### Academic course information | Discipline's | Discipline's | Туре | No. of hours per week | | | Number of | ECTS | |------------------|---------------------------|-----------------------------|-----------------------|------------|-------|-----------|-------| | code | title | | Lect. | Pract. | Lab. | credits | | | YaA5208 | Nuclear
Astrophysics | Elective | 2 | 1 | 0 | 3 | 5 | | Lecturer | Takibayev N. of NAS RK, p | | m., acader | nic Office | hours | Scheo | duled | | e-mail | | E-mail: takibayev@gmail.com | | | | | | | Telephone number | Telephone: 29 | 925-133; 8-7 | 777-704-03 | 396 Audito | ory | 31 | 9 | | Academic | Type of course "Nuclear Astrophysics" is elective component and its purpose: | |---------------|---| | presentation | Theoretical Nuclear Physics. | | of the course | The aim of the course: to give the students the deep understanding of the modern physics of nucleus of atoms and quantum mechanics of many-particle systems and self-study. As a result of the discipline, the student will be able to: — describe acquired knowledge (specifically) and it's understanding; | | | interpret an understanding of the overall structure of the study field and the relations between its elements (specifically); generalize new knowledge in the context of basic knowledge, interpret its contents; | | | create educational and social interaction and cooperation in the group; explain the solution of the problem, its importance; classify criticism and to criticize; decide to work in a team; | | | combine the role of taken course in the implementation of individual learning
paths. The system of descriptor verbs must be used during the formation of
competences; | | | design active and interactive methods which are recommended to ensure
deeper understanding and learning of educational material and to achieve
learning outcomes of the course (individual researches, group projects, case
studies and their methods). | | Prerequisites | Mathematical analysis, the theory of functions of complex variables, differentialequations, mathematical physics, statistical physics, physics of elementaryparticles. | | Post | The state of Control | | | | | |--|--|-------------------------------------|-----------------------------------|--|--| | requisites | The theory of gauge fields | and electroweak interaction | ons, chromodynamics, | | | | Information | quantum gravity. | | | | | | | Literature (with an indicati | on of the authors and data | output), the | | | | resources | availability(number), software and consumables with information about where you | | | | | | | can get them. | | | | | | | Recommended: | | | | | | | 1. Richard N. Boyd. A | n Introduction to Nuclear | Astrophysics. University of | | | | | Chicago Press (Apr | il 15, 2008) | | | | | | 2. Norman K. Glende | nning. Compact Stars: Nu | iclear Physics, Particle | | | | | Physics, and General | al Relativity. Springer; 2nd | d edition (June 16, 2000) | | | | | 3. D. Perlov, A.Vilen | kin Cosmology for the Cu | rious. Springer; 1st ed. 2017 | | | | | edition. July 20, 2017 | | | | | | | Additional: | | | | | | | 4. Gershberg R.E. Active solar-type main sequence stars. Odessa: Astroprint 2002. | | | | | | | | | | | | | | 5. B.Greene. The Elegant Universe: Superstrings, Hidden Dimensions, and the | | | | | | | Quest for the Ultimate Theory Hardcover – October 17, 2003 6. Cotnikova R. T Astrophysics. Irkutsk .: RIO 2005. | | | | | | | 7. A.G.W. Cameron and David Miles Kahl.Stellar Evolution, Nuclear | | | | | | | Astrophysics, and Nucleogenesis Dover Publications; 2 edition (March 21, | | | | | | | 2013) Feb 21, 2013 | ducteogenesis Dover Publi | cations; 2 edition (March 21, | | | | Academic | Academic Behavior Rules | • | | | | | policy of the | | | missibility of late attendance. | | | | course in the | Without advance notice of | hsence and undue tardine | ss to the teacher is estimated at | | | | context of | 0 points. | to some and undue tarame | 33 to the teacher is estimated at | | | | university | Academic values: | | | | | | moral and | Inadmissibility of plagiari | sm. forgery, cheating at | all stages of the knowledge | | | | ethical values | Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge control, and disrespectful attitude towards teachers. (The code of KazNU Student's | | | | | | | honor) | (| The code of Ruzivo Student's | | | | Evaluation | Criteria-based evaluation | : | | | | | and | Assessment of learning out | comes in correlation with | descriptors (verification of | | | | attestation | competence formation during midterm control and examinations). | | | | | | policy | Summative evaluation: evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students, (project / case study / program /) | The formula for calculating the final grade. | | | | | | | | Final grade for the | $discipline = \frac{IC1 + IC2}{2}.$ | 0,6 + 0,1MT + 0,3FC | | | | | Below are the minimum es | | | | | | | | 90% - 94%: A- | | | | | | 5% - 100%: A | | I | | | | | 5% - 100%: A
85% - 89%: B+ | 80% - 84%: B | 75% - 79%: B- | | | | | 26 7270 RESOURCE NOT 07 10 | | 75% - 79%: B-
60% - 64%: C- | | | # Calendar (schedule) the implementation of the course content: | Vee | Topic title (lectures, practical classes, Independent work of | Number | Maximum | |-----|---|--|---------| | ks | master students) | of hours | score | | | Module 1 | | | | 1 | Lecture-1 (L-1). Stars and interstellar medium. | 2 | - | | | Seminar -1 (S-1). The birth of stars. Study interstellar | 1 | 5 | | | medium. | | | | 2 | L-2.Galaxies and quasars. | 2 | - | | _ | S-2.Galaxies and quasars. | 1 | 5 | | 3 | L-3. Basic physical laws. | 2 | - | | J | S-3. The use of physical laws to the study of space objects (stars, | 1 | 5 | | | cosmic plasma) and the universe as a whole. | | | | | MSWT 1. Prepare the report: The use of physicallaws to the study of space | 1 | 20 | | | objects (stars,cosmic plasma) and the universe as a whole. | | | | 4 | L-4. Sources of stellar energy. | 2 | • | | 7 | S-4. Renewable energy sources. | 1 | 5 | | | Module 2 | | | | 5 | L-5. Interaction of radiation with matter. | 2 | - | | 3 | S-5.Elementary bases of the interaction of matter and | 1 | 5 | | | radiation. | | | | | MSWT 2. Prepare the report: Elementary basis of the | 1 | 20 | | | interaction of matter and radiation. | - | | | 6 | L6.Radiactive transfer equation and it's simple | 2 | • | | U | solutions. | - | | | | S6. Consideration of problems using the transfer equation. | 1 | 5 | | 7 | L7.Physical processes in celestial sources of radiation. | 2 . | | | , | S7. Nuclear reactions in stars and other | 1 | 5 | | | astronomical objects. | • | 5 | | | MSWT 3. Prepare the report: Nuclear reactions in stars and | 1 | 25 | | | other astronomical objects. | | 23 | | | 1st Intermediate Control (IC1) | | 100 | | 8 | Midterm (MT) | | 100 | | 8 | L-8. The theory of interactions. | 2 | 100 | | 0 | S-8. The interactions and reactions of two-particle and three- | 1 | 5 | | | particle types | • | 3 | | | Module 3 | | | | 9 | L-9. Energy and mechanisms of nuclear fission. | 2 | | | 9 | S-9. Thermonuclear reactions, thermonuclear bomb. | - | 5 | | | | 1 | | | | MSWT 4. Prepare the report: Thermonuclear reactions, | 1 | 10 | | | thermonuclear bomb. | | | | 10 | L-10. The luminosity of stars and their mass. | 2 | • | | | S-10. The explosions of supernovae, quasars, pulsars, neutron | 1 | 5 | | | stars. | | | | | S-13. The latest discoveries and developments in | 1 | 5 | |--------------------|---|---|-----| | | the study of the universe in recent years. | | | | | MSWT 6. Prepare the report: The latest discoveries and developments in the study of the universe in recent years. | 1 | 20 | | 14 | L-14.Nuclear reactions in astrophysical objects. | 2 | | | 14 | S-14. Nuclear reactions in astrophysical objects. | 1 | 5 | | 15 | L-15.Databases on nuclear reactions. | 2 | - | | | S-15.Databases on nuclear reactions. | 1 | 5 | | | | 1 | | | | MSWT 7. Prepare the report: Astrophysical observations. | 1 | 25 | | | | - | | | | MSWT 7. Prepare the report: Astrophysical observations. 2 nd Intermediate Control (IC2) | 1 | | | 2 nd Ir | ntermediate Control (IC2) | | 100 | | | Exam | | 100 | | Lecturer_ | Se ; | Takibayev N.Zh. | |---|------|-----------------| | Head of the Department | | Abishev M.E. | | Chairman of the Faculty Methodical Bureau | Hady | Gabdullina A.T. | | | 1 | |